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Abstract

The paper deals with the crack nucleation and stability in strain ®elds of stress concentrators (e.g. voids, gas bubbles,

secondary phase precipitates). A general equation describes critical and subcritical crack length as a function of external

(applied loading) and internal (stress concentrator type, normal traction, elastic properties of matrix, etc.) parameters.

For the critical crack an analog of the Gri�th criterion is found. The reduction of fracture stress due to di�erent types

of internal stress concentrators was evaluated. Ó 1999 Published by Elsevier Science B.V. All rights reserved.

PACS: 62.20.Mk; 81.40.Np; 81.40.Cd; 46.30.N

1. Introduction

Severe degradation of mechanical properties of nu-

clear reactor materials, the so-called high temperature

irradiation embrittlement (HTIE), is regarded as one of

the most important problems in radiation physics. It

reduces operating temperature, working stress, and/or

life time of a reactor. Although HTIE has been studied

for more than 30 years, its driving mechanisms are still

far from being understood. A number of approaches

relate HTIE to structural evolution of the materials

under environmental conditions [1±4].

Modern structural reactor materials have compli-

cated chemical composition and operate in hard envi-

ronmental conditions (thermal cycling, fast particle

irradiation, alternate loading, etc.) Such a complex in-

¯uence results in the microstructural change of a mate-

rial, redistribution of its components, formation and

growth of secondary phase precipitates, gas bubbles and

voids. These macroscopic structural imperfections are

regarded as stress concentrators. According to trans-

mission and scanning electron microscopy observations

[4], the preferable nucleation regions for stress concen-

trators are structural inhomogenities, namely, grain

boundaries (GB) and triple grain junctions (TGJ) ori-

ented normally to the applied stress. Taking into ac-

count noticeable local stress ®eld modi®cations by stress

concentrators, their presence can not only facilitate

crack nucleation and propagation but also change the

fracture mode from intergranular to transgranular and

from viscous to brittle. The change of the fracture mode

is the tentative proof of HTIE.

In this paper we consider the nucleation and stability

of a crack formed at a stress concentrator. The results

obtained is applied to the description of the behavior of

cracks formed at di�erent types of stress concentrators

often met in application-relevant materials.

2. Formulation of the problem

Here we discuss nucleation of a crack on a stress

concentrator in terms of two-dimensional geometry

(plain strain). Even though in application-relevant situ-

ations both the loading geometry and the shape of stress

concentrators are usually three-dimensional, the sim-

pli®cation used here makes it possible to elucidate

qualitative behavior of cracks at stress concentrators,

avoiding inevitable complications of three-dimensional

geometry. Moreover, in certain cases the two-dimen-

sional approach adopted here is directly applicable to
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real situations, such as the nucleation of cracks at ar-

moring ®bers in composite materials. Another example

is crack formation at the chains of secondary phase

precipitates or gas bubbles along TGJ in metals.

Let us assume that an in®nite matrix is subjected to a

mode I loading with a constant external tension, r, ap-

plied along the Oy axis of a Cartesian coordinate system

(see Fig. 1). A wedge crack is formed at the circular

stress concentrator with radius R. The crack is simulated

with a cut of length, L, along the Ox axis. The center, O,

of the coordinate system is chosen in the center of the

crack. The edges of the circle and the crack are subjected

to normal tractions, p1, and p2, respectively.

The condition of mechanical stability of a crack of

length L requires the force balance at the crack surface

to be ful®lled:

rijnj

��
S
� Pi�x� � 0; i; j � X;Y;

S � fÿL=26 x6 L=2; y � 0g; �1�

where n is a unit vector of the outward normal to the

crack surface, S; P�x� is the total traction at the crack

surface caused by both external and internal loading.

The absence of a shear stress resulting from the sym-

metry of the problem makes it possible to reduce Eq. (1)

to the following form:

ryy�x� � ÿP�x�; �2�
where P �x� is the component of the traction normal to

the crack. In our case P �x� can be written as (see Fig. 1)

P �x� � ÿp2 ÿ r0
yy�x� � S�h�x��; �3�

where S�h�x�� is the adhesive force acting in the crack tip

(in the region d, a� d � L, where a is the interatomic

distance) [5] and r0
yy�x� is the stress acting in the plane

y � 0 in the sample without the crack. According to the

general approach of linear theory of elasticity [6], r0
yy�x�

is straightforwardly obtained in the form

r0
yy�x� �

r
2

2

"
� 1

�
� 2p1

r

�
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#
:
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In order to ®nd the dependence of crack length L on

the parameters of the problem the well-known technique

to simulate a crack by a pile-up of virtual dislocations [7]

is applied. Equilibrium crack length L is de®ned by the

equation

l
2p 1ÿ m� �

ZL=2

ÿL=2

x�n�
nÿ x

dn � ryy x� �; �5�

where l and m are the shear modulus and Poisson's ratio,

respectively, x�n� is the density of virtual dislocations

related to the displacement of the crack edges, h�x�, as

x�x� � dh�x�
dx

: �6�

3. Solution

In order to ®nd x�x� from Eqs. (3)±(5), let us de®ne

non-dimensional variables

g � 2x
L
; q � 2R

L
�7�

and use the expansion of the function ryy�g� over the

Chebyshev polynomials Tn [8]:

ryy�g� �
X1
n�0

QnTn; �8�

where

Q0 � 1

p

Z1
ÿ1

ryy�g� dg�������������
1ÿ g2

p ;

Qn � 2

p

Z1
ÿ1

ryy�g�Tn�g� dg�������������
1ÿ g2

p :

�9�

Eq. (5) represents a Hilbert transformation of x�x�:
Since Chebyshev polynomials are the characteristic

functions for the transformation, the density x�x� is

obtained by reconversion in the form [8]

x�g� � 2�1ÿ m�
l

"
ÿ Q0g�������������

1ÿ g2
p �

�������������
1ÿ g2

p X1
n�1

QnUnÿ1�g�
#
:

�10�
The ®rst term in the summation in Eq. (10) diverges at

the crack tips, whereas the other terms are limited there.

So, the stress evaluated from Eq. (5), after substitution

of Eq. (10), diverges as well, if the condition Q0 � 0 is

not satis®ed. If the coe�cient Q0 6� 0, then according to

Eq. (8) ryy becomes in®nite at the crack tips, i.e. in®ni-

tesimal loading will su�ce to provide crack propagation

Fig. 1. Geometry of the problem.
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and fracture of the material. To avoid this, one should

require thatZ1
ÿ1

ryy�g� dg�������������
1ÿ g2

p � 0: �11�

This condition coincides with that introduced in

Refs. [9,7]. The requirement, Eq. (11), is the condition of

mechanical stability of the crack (analogous to the

Gri�th criterion).

4. The criterion of a crack stability

The criterion of mechanical stability of a crack

formed at a stress concentrator, as de®ned by Eq. (11),

can be written in the form

p2� � r� � p1

�
� r
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���
L
p � 0; �12�

where K is the stress intensity factor [10], de®ned by

K �
Z1

0

S h�x�� ����
x
p dx: �13�

Criterion (12) describes the behavior of brittle and

quasibrittle cracks irrespective of the crack formation

mechanism (fatigue, hardening, strain, intergranular

crack, etc.). Moreover, it describes critical and subcriti-

cal (smaller than the Gri�th one) cracks.

In the case when the crack is the Gri�th one, K is

equal to the fracture toughness of the material, Kg,

evaluated from Ref. [10]:

Kg �
�������������������

cE
p 1ÿ m2� �

s
; �14�

where c is the speci®c energy of the crack surface.

Let us analyze the asymptotic behavior of a Gri�th

crack formed on a stress concentrator. First of all, let us

rewrite Eq. (12) in a dimensionless form

p2

rg

�
� s
�
� p1

rg

�
� s
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l

r
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where l � L=Lg is the dimensionless crack length, Lg �
2K2

g=pr2
g the length of the Gri�th crack, rg the applied

stress corresponding to the Gri�th crack, and s � r=rg

is the dimensionless external loading.

Let us analyze a `Gri�th' crack (the length l � 1). In

the case when q� 1 the stress required to initiate the

unstable crack growth is reduced as compared to the

Gri�th one as

s � 1

3
1

�
ÿ p1

rg

�
� p2

rg

�
� 1

q
2

p1

rg

�
� 19

6
1

�
ÿ p2

rg

���
:

�16�
In the opposite case when q� 1, for the same crack

length l � 1, the critical stress is given by

s � 1

�
ÿ p2

rg

�
�

���
q
p

2
���
2
p p2

rg

�
ÿ p1

rg

ÿ 1

2

�
� p1

rg

1

16
q: �17�

An important particular case corresponds to q � 1,

when the crack size is equal to the diameter of the stress

concentrator:

s � 1

1� 5=12
���
3
p � 13=72

1

�
ÿ 2

3
���
3
p p1

rg

�
� p2

rg

��
� 0:704 1

�
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3
���
3
p p1

rg

�
� p2

rg

��
:

�18�

5. Applications

Although the proposed approach deals with brittle

crack nucleation and propagation, the results obtained

can be applied for description of quasibrittle crack

evolution, when the crack tip emits dislocations. In or-

der to take into account material plasticity e�ect on the

crack behavior and fracture, the stress intensity factor

(14) renormalization is su�cient. The case of extended

plasticity is not discussed here. It is proposed to apply

the results obtained for investigation of embrittlement of

relevant materials.The embrittlement is one of the main

problems of radiation materials science. Appearing of

stress concentrators can result in change of fracture

mode from viscous to brittle and lead to strong em-

brittlement.

Let us apply the developed model for a description of

the crack formation on particular types of stress con-

centrators, namely secondary phase precipitates, gas

bubbles, voids.

5.1. Voids

In order to check the approach, it is applied to the

description of Gri�th crack formation at a void with no

internal loading: p1 � p2 � 0. However, the presence of

the stress concentrator results in the reduction of the

fracture stress (see Fig. 2) according to

1� 1

2

�
� 3

8

q
q� 2

�
q� 1

q� 2

�����������
q

q� 2

r
� 3

8

q
q� 2

1� 3 q� 1� �2
q� 2� �2 ÿ 1

s
� 0:

�19�

The same data have been obtained numerically in

Refs. [11±14]. Some calculations have been carried out

in Ref. [15]. The asymptotic behavior of Eq. (19) for

q� 1 is given by (see Fig. 2)
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s � 1

3
1

�
� 19

6

1

q

�
; �20�

whereas at q� 1 Eq. (19) takes the form (see Fig. 2):

s � 1ÿ
���
q
p

4
���
2
p : �21�

The stress s inducing crack nucleation q!1� � is given

by

s � 1

3
; �22�

i.e. three times less than that in the bulk of material (the

well-known result, see e.g. Refs. [11±15]).

5.2. Gas bubbles

Gas bubbles are typical in materials irradiated in

nuclear reactors, where helium is generated by nuclear

n; a� � reactions. Because of the low solubility in metals, it

segregates into helium bubbles. Helium bubble forma-

tion often results in severe degradation of the mechanical

properties of structural reactor materials as a result of

high temperature helium embrittlement (HTHE).

In the case of crack formation at a gas bubble the

internal loads are de®ned by the gas pressure and

p2 � p1 � P . The dependence of fracture stress s on the

internal gas pressure and q is shown in Fig. 3. The

strong reduction of s due to the internal gas pressure is

clearly seen. The most signi®cant e�ect occurs for large

q. According to Eq. (16) the asymptotic behavior of

Eq. (12) is given by

s � 1

3
1

�
ÿ 2P

rg

� 1

q
2

P
rg

�
� 19

6
1

�
ÿ P

rg

���
: �23�

The critical stress for crack nucleation at a bubble

(q� 1� is reduced (in comparison with the Gri�th

crack) to

s � 1

3
1

�
ÿ 2

P
rg

�
: �24�

It is seen that at the internal gas pressure P � rg=2

the stress, s, for fracture initiation vanishes, i.e. an in-

®nitesimal external applied stress will su�ce to provide

crack propagation. Let us investigate the change of ac-

tual gas pressure P acting during crack evolution.

Let us assume that the gaseous impurity behavior

satis®es the following equation of state:

PV � const; �25�
where the cross-section, V , of the cavity (crack and

bubble) is determined by

V � Vb � Vcr � pR2 �
ZL=2

ÿL=2

h�x� dx: �26�

In order to estimate the crack contribution to the total

volume of the system (and consequently reduction of the

internal gas pressure P due to crack formation) the de-

pendence of the Vcr=Vb ratio on the q for di�erent external

loadings and internal pressure of the gaseous impurity is

outlined (see Fig. 4). It is clear that the crack contribu-

tion, Vcr, to the total cavity volume, V , can be neglected

for all physically possible cases we are interested in.

Therefore, according to Eq. (25) the actual gas pressure P
is invariable throughout the crack propagation process.

5.3. Secondary phase precipitates

Secondary phase precipitates are a common feature

of structural materials. They can be formed by thermal

Fig. 3. Dependence of dimensionless fracture stress on the q
and internal gas pressure.

Fig. 2. Dependence of dimensionless fracture stress on the q
and asymptotic functions.
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treatment in order to improve service properties of the

structural material or arise due to environmental e�ects.

For example, improper heat treatment and/or hard

thermal conditions induce di�usional redistribution of

chromium from the bulk of the grain to the grain

boundaries in stainless steels and result in Cr23C6 pre-

cipitate formation. The presence of these precipitates at

the grain boundaries leads to embrittlement of steels.

Similar processes occurring in titanium alloys lead to r-

phase formation and result in strong embrittlement. Ir-

radiation is an additional factor activating di�usional

redistribution of material components.

The dependence of dimensionless tensile stress s on

the normal traction p on the secondary phase-matrix

interface and q is given by

s� p
rg

�
� s

1

2

�
� 3

8

q
q� 2

��
q� 1

q� 2

�����������
q

q� 2

r
� s

3

8

q
q� 2

1� 3 q� 1� �2
q� 2� �2 ÿ 1 � 0

�27�

and illustrated in Fig. 5. The crack evolution is notice-

ably in¯uenced by the precipitate only for su�ciently

large q values:

s � 1

3
1

�
ÿ p

rg

� 1

q
2

p
rg

�
� 19

6

��
: �28�

The critical stress for crack nucleation at a secondary

phase precipitate is given by

s � 1

3
1

�
ÿ p

rg

�
: �29�

In contrast to HTHE discussed above, the internal

loading necessary for spontaneous fracture is two times

higher. Nonetheless, in relevant applications, precipi-

tates are more probable candidates for the reason of

spontaneous fracture than gas bubbles. Indeed, the

precipitates can be larger (10 or even 100 lm) than the

bubbles, and stress acting at the matrix±precipitate in-

terface is independent of the size of the precipitate,

whereas the internal helium pressure reduces with in-

crease of the bubble size.

It should be pointed out that there are a lot of pre-

cipitate±matrix systems where the normal traction p is

negative, and the in¯uence of a precipitate on crack nu-

cleation and evolution is more complicated. Dependence

of the fracture stress s on the q value and the negative

normal traction p is shown in Fig. 6. An absolute in-

crease of the normal traction p results in a respective

enlargement of the critical stress. However, the actual

value of the fracture stress can be either smaller or larger

than the Gri�th one depending on the q value (see

Fig. 7). Curve 1 in Fig. 7 corresponds to zero normal

traction. Curves 2, 3 and 4 can be divided into two

Fig. 5. Dependence of dimensionless fracture stress on the q
and normal traction on secondary phase-matrix interface.

Fig. 4. Dependence of the Vb=Vcr ratio on the q at di�erent internal and external loadings.
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regions. In the ®rst region, q6qc (where qc � qc�p=rg�),
dimensionless fracture stress, s, is larger than the Gri�th

one. In the second region, q Pqc, fracture stress is less

than the Gri�th one. In the cases described by curves 2, 3

and 4 the preferable crack nucleation location is at the

precipitate, but crack propagation for all values q < qc is

obstructed by the local stress ®eld induced by the inclu-

sion. Curve 5 illustrates the case when the actual fracture

stress is larger than the Gri�th one for any values of the

q parameter. In this case crack nucleation can occur

everywhere except the secondary phase precipitate.

6. Conclusions

The paper deals with the problem of crack formation

at stress concentrators. A general equation for the

critical and subcritical crack length as a function of

external and internal parameters is suggested. In the

case of a critical crack this equation reduces to an an-

alog of the Gri�th criterion. In the limiting case of

crack nucleation when q� 1 the critical stress is found

for di�erent types (voids, gas bubbles, secondary phase

precipitates) of stress concentrators. It has been found

that the internal stress concentrators can noticeably

decrease the fracture stress of the material. The com-

plicated in¯uence of secondary phase precipitates hav-

ing negative normal traction on crack evolution is

established. A detailed investigation of this problem is

to be carried out elsewhere.
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